

lwetl - Light Weight Extraction Transform Load tool

Contents:

	Introduction

	Installation

	Examples and use

	Module components

Indices and tables

	Index

	Module Index

	Search Page

Introduction

The module lwetl is a light-weight database client to transfer data between various
databases, or inbetween tables of the same database.

It is intended as a administrative-, or development-tool to script quick modifications to
an existing database. It uses python 3 in combination with the
JayDeBeApi [https://pypi.python.org/pypi/JayDeBeApi] module and JDBC jar files.

Typical usage

	extract data from a database, either through a command-line interface, or through python classes.

	upload table rows into a target database.

	transfer of (modified) data to files or pipes in common formats such as: text, csv, xml, xlsx, or sql.

	extract or upload binary data (not supported by all JDBC drivers).

Key features

	
	A centralized configuration file for database connections:

	
	choice of the JDBC driver.

	definitions of the JDBC connection URLs.

	optionally parsing of ORACLE’s tnsnames.ora for access through JDBC thin client.

	optionally saving database access credentials as an alias. The password in these
credentials may be encrypted with a master password.

	Direct command-line access to a database for upload and download.

	Command-line transfer of tables between independent database instances, possibly of a different server-type.

	Python classes for encapsulated transfer of data.

Due to its nature, the tool is suited for small- or medium-sized transformation-, import-, or
extraction-tasks (a throughput rate up to 4000 records per second).

Multi-threading of the database connection is not supported.

Requirements

	A python 3 environment with permission to install modules (system-wide or as virtual environment).

	A Java 1.7+ runtime environment

	Write-access to the user home-directory (a configuration directory $HOME/.lwetl is auto-created).

Status

This project is in a pre-pre-alpha stage. It has been tested with drivers for mysql, sqlserver,
oracle, postgresql, and sqlite:

	Linux Mint (Ubuntu, Debian) with python 3.5.

	CentOS Linux (Redhat, Fedora) with python 3.4.

	Windows 10 Home with Anaconda [https://www.anaconda.com/download/#windows] python 3.6.

Warning

some database serves (e.g., MySQL) may make a distincion between upper-case and
lower-case table-names and/or column-names. This might cause errors, since all current tests have
been performed in environments where such a distinction does not exist.

Installation

The module depends on Jpype1 [https://pypi.python.org/pypi/JPype1] and optionally regex [https://pypi.python.org/pypi/regex]. Both need access to a compiler for installation, if installed with pip.

	Note:

	the regex [https://pypi.python.org/pypi/regex] module is used to parse the ORACLE connection configuration (tnsnames.ora). If you do not intend to access ORACLE through the settings of this file, the module may be ignored.

Operating Systems

Linux

The module may in installed in a python virtual environment, for example like:

virtualenv --no-site-packages -p /usr/bin/python3 $HOME/my_virtual_envs/jdbc
source $HOME/my_virtual_envs/jdbc/bin/activate

The module can be installed with pip from github [https://github.com/rene-bakker-it/lwetl.git]:

pip install git+https://github.com/rene-bakker-it/lwetl.git

Alternatively the repository may first be cloned:

git clone https://github.com/rene-bakker-it/lwetl.git
cd lwetl
pip install .

Windows

Note 1: The module depends on Java. Make sure that the JVM and Python are both of the same type, eiter 32 bits, or 64 bits.
Only the 64 bits version has been tested:

Note 2: the lwetl package depends on the module cryptography [https://cryptography.io/en/latest/installation/], which depends on openSSL.

pip install git+https://github.com/rene-bakker-it/lwetl.git
pip install regex

Dependencies

The module depends on the following packages:

	et-xmlfile [https://pypi.python.org/pypi/et_xmlfile],

	JayDeBeApi [https://pypi.python.org/pypi/JayDeBeApi],

	jdcal [https://pypi.python.org/pypi/jdcal],

	Jpype1 [https://pypi.python.org/pypi/JPype1],

	openpyxl [https://openpyxl.readthedocs.io/en/default],

	psutil [https://pypi.python.org/pypi/psutil],

	PyYAML [https://pypi.python.org/pypi/PyYAML],

	cryptography [https://cryptography.io/en/latest/installation/], and

	regex [https://pypi.python.org/pypi/regex] (optionally).

Tests in the tests directory are based on pytest [https://pypi.python.org/pypi/pytest], whichalso requires: pytest-html [https://pypi.python.org/pypi/pytest-html], pytest-metadata [https://pypi.python.org/pypi/arcpy_metadata], and pytest-progress [https://pypi.python.org/pypi/pytest-progres].

Documentation in the docs directory is based on Sphinx [http://www.sphinx-doc.org/en/stable] and the read the docs [https://github.com/rtfd/sphinx_rtd_theme] theme.

Developers, who want to use the utility function set-version.py in the main directectory of the source code, should also install GitPython [https://pypi.python.org/pypi/GitPython].

Examples and use

General

Make sure the java JRE (or JDK) are known to the system. If this is not the case, add JAVA_HOME to the system environemnt, or specify it in the env section of hte configuration file (see below).

If successful the command sql-query list should run without errors. You may see messages like:

INFO: ojdbc6-12.1.0.1-atlassian-hosted.jar downloaded to: ./jdbc/lib/python3.4/site-packages/lib
INFO: postgresql-9.4.1208-jdbc42-atlassian-hosted.jar downloaded to: ./jdbc/lib/python3.4/site-packages/lib
INFO: sqlite-jdbc-3.21.0.jar downloaded to: ./jdbc/lib/python3.4/site-packages/lib
INFO: mysql-connector-java-5.1.39.jar downloaded to: ./jdbc/lib/python3.4/site-packages/lib
INFO: mssql-jdbc-6.3.5.jre8-preview.jar downloaded to: ./jdbc/lib/python3.4/site-packages/lib

These are downloads, which typically take place once only. The origin of these file may be found in:

$HOME/.lwetl/config-example.yml

To connect to a database, server definitions must be added to the YAML file $HOME/.lwetl/config.yml, see the file $HOME/.lwetl/config-example.yml for some examples.

Invocation from the command-line

A correctly configured connection may then be used like:

sql-query <username/password@server> "SQL statement"

or with a configured alias:

sql-query <alias> "SQL statement"

Implemented command line options are (use the -h option for help):

	lwetl-security

	to encrypt/decrypt the passwords in the alias with a master password.

	sql-query

	as a general purpose command-line sql parser, up-loader, or down-loader.

	table-cardinality

	to dump cardinality data of a table into an xlsx spreadsheet.

	db-copy

	to copy entire tables between database instances.

Alternatively they may be invoced as a module, for example:

python -m lwetl.programs.sql_query.main

Invocation inside python

The repository directory examples is intended for a collection of simple example scripts. The module directories lwetl/programs provides more advanced examples.

An example to dump binary images from the database into the current directory:

from lwetl import Jdbc

jdbc = Jdbc('login alias')
for fname, img in jdbc.query("SELECT file_name, image_field FROM MY_TABLE"):
 with open(fname,'wb') as f:
 f.write(img)

Module components

Index

	The configuration file (config.yml)

	The main connection

	Import into a database

	Export from a database

The configuration file (config.yml)

Locations

The configuration-file (config.yml) may be stored at the following locations:

	in the root of the module (always present),

	for Linux systems in the system directory /etc/lwetl/config.yml,

	in the user-home directory $HOME/.lwetl/config.yml (auto-created),

	in the current directory

Upon invocation the program scans the locations in the order given above, and identical definitions are successively overwritten.

Format

The configuration must in yaml [http://yaml.org/] markup format and may contain any of the following sections:

	env:

	a section to specify or change system environment variables

	drivers:

	to specify the used jdbc drivers and their configuration

	servers:

	to specify database servers and the database schemes (instances)

	alias:

	containing access credentials and references to database servers, which were specified in the servers section.

	encrypt: (true|false)

	to specify if the passwords in the alias should be encrypted with a master password.

Note: access credentials in the alias section may stored in plain text. If security is an issue, you have
the following options:

	make sure that the configuration file is properly read-protected.

	use the lwetl-security program to encrypt the passwords with a master password. By default the master password is
asked each time you open a database connection. As an alternative it may may be stored in the environment
variable LWETL (less secuure).

	If you do not create aliases the username and password must be entered in the appropriate methods.

Encryption with a master password

(re) encrypt the home configuration file with a password

1. make sure the master password has to be entered on the command line:
unset LWETL

2. (re) encrypt
the current and new password will be asked on the command line
lwetl-security -c ~/.lwetl/config.yml

remove encryption
lwetl-security -r ~/.lwetl/config.yml

Example

user defined environment variables
env:
 ORACLE_HOME: /usr/lib/oracle/12.1/client64
 TNS: /usr/lib/oracle/12.1/client64/network/admin/tnsnames.ora

jdbc drivers identified by a type (used as type in the next section)
#
required parameters:
- jar: url to download the jdbc jar file if not found on the module library
may either be an url or a fixed reference to a file on the file-system
- class: name of the class to use in the jar file
- url: start of the connection url, will be extended with the url defined in the section 'servers'
#
optional parameters:
- attr: additional attributes to add at the end of the generated connection url
- escape: boolean - if set to true, all column names will be escaped in the uploader routines. Permits the
use of reserved words as column names.
WARNING: not implemented for postgresql
#
WARNING: the strings used to define the driver types below are also used in the python code and should not be changed.
drivers:
 sqlserver:
 # binary upload for jtds driver not supported
 jar: 'http://central.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.3.5.jre8-preview/mssql-jdbc-6.3.5.jre8-preview.jar'
 class: 'com.microsoft.sqlserver.jdbc.SQLServerDriver'
 url: 'jdbc:sqlserver://'

 mysql:
 jar: 'http://central.maven.org/maven2/mysql/mysql-connector-java/5.1.39/mysql-connector-java-5.1.39.jar'
 class: 'com.mysql.jdbc.Driver'
 url: 'jdbc:mysql://'
 attr: '?autoReconnect=true&useSSL=false'
 escape: true

 oracle:
 jar: 'https://maven.atlassian.com/3rdparty/com/oracle/ojdbc6/12.1.0.1-atlassian-hosted/ojdbc6-12.1.0.1-atlassian-hosted.jar'
 class: 'oracle.jdbc.OracleDriver'
 url: 'jdbc:oracle:thin:@'

 postgresql:
 # jar: 'http://central.maven.org/maven2/org/postgresql/postgresql/42.1.4.jre7/postgresql-42.1.4.jre7.jar'
 jar: 'https://maven.atlassian.com/3rdparty/postgresql/postgresql/9.4.1208-jdbc42-atlassian-hosted/postgresql-9.4.1208-jdbc42-atlassian-hosted.jar'
 class: 'org.postgresql.Driver'
 url: 'jdbc:postgresql://'

servers
defines database servers on the schema (instance) level
#
required parameters:
- type - must be one of the types defined in drivers
- url - connection url. The complete url is <url_driver><url server><attr driver>
#
NOTE: for ORACLE additional server names may be obtained from the file tnsnames.ora
servers:
 scott_mysql:
 type: mysql
 url: "192.168.7.33:3306/scott"
 scott_postgresql:
 type: postgresql
 url: "172.56.11.41:5432/scott"
 scott_sqlserver:
 type: sqlserver
 url: '172.56.11.41\scott:1534'

alias for connections, in ORACLE credentials format
<username>/<password>@<servername>
encrypted: false
alias:
 scott_mysql: "scott/tiger@scott_mysql"
 scott_postgresql: "scott/tiger@scott_postgresql"
 scott_sqlserver: "scott/tiger@scott_sqlserver"
 scott_oracle: "scott/tiger@scott_oracle"
 scot: "scot/xxxxxxxx@tns_entry"

Sections

env - environment

Function:

	specify the jre/jdk for the jdbc drivers

	specify the location of ORACLE configurations

By default this section is empty.

Example

env:
 # Windows
 JAVA_HOME: 'C:\Progra~1\Java\jre1.8.0_65'
 ORACLE_HOME: 'C:\Oracle\product\11.2.0'
 # Linux
 TNS: /usr/lib/oracle/12.1/client64/network/admin/tnsnames.ora

	Note 1:

	if only ORACLE_HOME is specified, the program will search for the file $ORACLE_HOME/network/admin/tnsnames.ora. If also TNS is specified, the program will first look at the location specified by $TNS. Only if this section is not found, it will look at the previous location.

	Note 2:

	On Windows 64-bit systems:

Progra~1 = 'Program Files'
Progra~2 = 'Program Files(x86)'

drivers - Jdbc driver definitions

Function - associate a unique tag to a database server type:

	specify a source location of a jdbc jar file (url or file)

	specify the jdbc driver class of the jar file

	specify the base of the connection url

servers - Database server definitions

Function - associate a unique tag to a database connection:

	the driver driver used (see previous section)

	main connection URL specifying:
- the IP address of the database server
- the scheme/instance of the database

alias - Connection aliases

Function:

	specify the jre/jdk for the jdbc drivers

The main connection

The class Jdbc creates a connection to a database, which remains open until the object isdestroyed.

	
class Jdbc(login, auto_commit=False, upper_case=True)

	Creates a connection. Raises an exception if the connection fails, see the example below.

	Parameters

	
	login (str) – login alias defined in config.yml, or authentication credentials like:

username/password@service

The parser assumes that the name of the service does not contain the ‘@’ character. The password should
not contain a ‘/’.

	auto_commit bool (bool) – specifies the auto-commit mode of the connection at startup. Defaults to False (auto-commit disabled).

	upper_case (bool) – specifies if the column names of SQL queries are converted into upper-case. Convenient if the result of
queries is converted into dictionaries.

Example:

from lwetl import Jdbc, ServiceNotFoundException, DriverNotFoundException

create a connection to 'scott' with password 'tiger' to oracle server 'osrv1'
(as defined in tnsnames.ora)

try:
 jdbc = Jdbc('scott/tiger@osrv01')
except (ServiceNotFoundException, DriverNotFoundException) as nfe:
 print('ERROR - could initialize: ' + str(nfe))
except ConnectionError as ce:
 print('ERROR - failed to connect: ' + str(ce))

	
connection

	The connection to the database as returned by jaydebeapi.connect. See PEP249 [https://www.python.org/dev/peps/pep-0249/] for further details.

	
execute(sql: str, parameters: (list, tuple) = None, cursor: Union[Cursor, None] = None, use_current_cursor: bool = True, keep_cursor: bool = False) → Cursor:

	Execute a query, optionally with list of parameters, or a list of a list of parameters. Raises an
SQLExecutionException if the query fails, see the example below.

	Parameters

	
	sql (str) – query to execute

	parameters (tuple,list,None) – parameters specified in the sql query. May also be None (no parameters), or a list of lists

	cursor (Cursor,None) – the cursor to use for execution. Auto-generate, if not specified. For details see the next
function arguments.

	use_current_cursor (bool) – if the cursor is not specified, it will try to use the last-used cursor of the same life-cycle type.
See the next argument for details. Defaults to True.

	keep_cursor (bool) – life-span of the cursor: keep it on a commit or rollback. Defaults to False. It is intended to permit
long-lived cursors, when a large number of rows are read from the database, which triggers write-
operations on a different cursor, possibly with multiple commits.

	Returns

	a jaydebeapi.connect.Cursor for further processing.

Example:

from lwetl import Jdbc, SqlExecutionException

jdbc = Jdbc('scott/tiger@osrv01')

try:
 cur = jdbc.execte("INSERT INTO TST_NAMES (ID, USERNAME) VALUES (17,'scott')")
except SQLExectionException as sqle:
 print('ERROR - could not execute: ' + str(sqle))

	
close(cursor=None):

	Closes the specified cursor. Use the current if not specified. Cursors which are aleady closed, or are not
associated to the jdbc conection are silently ignored.

	
get_columns(cursor=None) → OrderedDict:

	
	Parameters

	cursor (Cursor) – the cursor to query. Uses the last used (current) cursor, if not specified.

	Returns

	the column associated to the cursor as an OrderedDict, or an empty dictionary if no columns were found.

	
commit():

	Commits pending modifications of the specified cursor to the database. Commits and invalidates all cursors
with pending commits.

Use appropriate arguments in the execute() command, if you intend to generate read-only queries,
which must extend over multiple commits to the database. It is recommended to use the query()
command for this purpose.

	
rollback():

	Rolls back pending modifications to the database. Cancels and invalidates all cursors with pending commits.

	
get_data(cursor: Cursor = None, return_type=tuple, include_none=False, max_rows: int = 0, array_size: int = 1000) → iterator:

	Get the data retrieved from a execute() command.

	Parameters

	
	cursor (Cursor) – cursor to query, use current if not specified

	return_type (Any) – the return type of the method. Defaults to tuple. Other valid options are list,
dict, OrderedDict, or a (tuple of) stings.
In case of the latter, the output is casted to the specified types. Supported types are Any
(no casting), str, int, bool, float, date,
or a format string compatible with :class:’datetime.strptime()’. The format string for ‘date’ is
‘%Y-%m-%d [%H:%M:%S]’. If a single string is specified, the returned row will only be the first value of
each row. Otherwise the output is a tuple of values with a maximum length of the specified input tuple.
This option is particularly useful for connections to a sqlite, where the auto-casting casting of the types
in the jdbc driver may fail.

	include_none (bool) – if set to True, also returns None values in dictionaries. Defaults to False. For
tuple, or list, all elements are always returned.

	max_rows (int) – maximum number of rows to return before closing the cursor. Negative or zero implies all rows

	array_size (int) – the buffer size to retrieve batches of data.

	Returns

	an iterator with rows of data obtained from an SQL with the data-type specified with the return_type
parameter.

	
query(sql: str, parameters=None, return_type=tuple, max_rows=0, array_size=1000) → iterator:

	Combines the execute() and get_data() into a single statement.

	
query_single(sql: str, parameters=None, return_type=tuple) → (tuple, list, dict, OrderedDict):

	
	Returns

	only the first row from query()

	
query_single_value(sql: str, parameters=None):

	
	Returns

	the first column from query_single()

	
get_int(sql: str, parameters=None):

	A short-cut for:

int(query_single_value(sql, parameters))

Exceptions

	
class SQLExcecuteException

	

Raised when an execute() command cannot be parsed.

	
class ServiceNotFoundException

	

Raised when a database connection cannot be reach the database server.

	
class DriverNotFoundException

	

Raised when the jdbc driver, associated to the database connection, cannot be retrieved.

	
class CommitException

	

Raised when a commit() command fails.

Utility functions and classes

	
class JdbcInfo(login: str)

	Displays parameter information of the jdbc driver.

	Parameters

	login (str) – login alias defined in config.yml, or authentication credentials.

Example:

from lwetl JdbcInfo

jdbc_info = JdbcInfo('scott')
jdbc_info()

	
get_execution_statistics() → str

	Retrieves some timing statistics on the established connections.

	Return type

	multi-line string

	
tag_connection(tag:str, jdbc:Jdbc)

	Marks specific connections, such that the function get_execution_statistics() provides more detail.

	Parameters

	
	tag (str) – a tag for a connection

	jdbc (Jdbc) – an established database connection

Example:

from import Jdbc, get_execution_statistics, tag_connection

jdbc = {
 'SRC': Jdbc('scott_source'),
 'TRG': Jdbc('scott_target')
}
for tag, con in jdbc.items():
 tag_connection(tag,con)

do lots of work

print(get_execution_statistics())

Import into a database

Import comes either as a sql import reader or as objects to read tablels of data.

SQL Import

	
InputParser(sql_or_filename_or_stream=None, sql_terminator:str=';'):

	Class to parse SQL input, either from file or from a stream (e.g., stdin)
Assumes that all SQLs are terminated with an sql_terminator character
(defaults to a semi-colon) at the end of a line.

Warning

This class may fail on multi-line string inputs that use the same character and the and of a CRLF.

Example:

import sys

from lwetl Jdbc, InputParser

jdbc = Jdbc('scott/tiger@osrv01')
with InputParser(sys.stdin) as parser:
 for sql in parser.parse():
 jdbc.execute(sql)

	
set_sql_terminator(sql_terminator):

	Specifies the SQL terminator.

	Parameters

	sql_terminator (str) – The specified SQL terminator

	
open(sql_fn_stream=None):

	Opens a TextIOWrapper for input

	Parameters

	sql_fn_stream (TextIOWrapper) – the stream to open

	
close():

	
Closes the input stream

	

	
parse(array_size=1) → iterator:

	parses the input stream.

	Parameters

	array_size (int) – buffer size of the iterator

	Returns

	an iterator of SQL commands

Data Readers

	
class CsvImport(filename_or_stream=None, delimiter="t", encoding='utf-8')

	Open a CSV file and extract data by row in the form of a dictionary
Expects the first row if the dictionary to contain the column names.

	Parameters

	
	filename_or_stream – if the argument is a string, the program will try to open the file with this name. For streams, it will
use the stream as-is. Defaults to the stdin.

	delimiter (str) – specifies the column delimiter of the CSV file. Defaulst to the TAB character.

	encoding (str) – character encoding to use for the input file. Defaults to utf-8

	
open(filename_or_stream=None, delimiter=None, encoding=None)

	
	Parameters

	
	filename_or_stream – specifies the input. If not specified, it takes the specifier when the class object was created.

	delimiter (str) – specifies the column deliter. If not specified, it takes the delimiter specified when the object was
created.

	encoding (str) – specifies the character encoding. If not specified, it takes the encoding specified when the object
was created.

	
close():

	closes the input stream. Only has an effect, if the input was specified as a filename.

	
get_data(max_rows=1000) → iterator

	
	Parameters

	max_rows (int) – retrieve the data as an generator/iterator. The parameter specifies the buffer size.

	
class LdifImport(filename_or_stream=None, separator=None, encoding='utf-8')

	Open a LDIF [https://www.ibm.com/support/knowledgecenter/en/SSVJJU_6.2.0/com.ibm.IBMDS.doc_6.2/admin_gd34.htm] file and extract data as a dictionary with the attribute names as keys.

	Parameters

	
	filename_or_stream – if the argument is a string, the program will try to open the file with this name. For streams, it will
use the stream as-is. Defaults to the stdin.

	separator (str) – in an ldif file, an attibure may occur multiple times in the same record. In such cases the value of the
dictionary becomes a list. In the case the separator is specified, this list is transformed into a string,
separating the elements with the specified separator.

	encoding (str) – character encoding to use for the input file. Defaults to utf-8

	
open(filename_or_stream=None, separator=None, encoding=None)

	opens the file or stream of input.

	Parameters

	
	filename_or_stream – specifies the input. If not specified, it takes the specifier when the class object was created.

	separator (str) – in an ldif file, an attibure may occur multiple times in the same record. In such cases the value of the
dictionary becomes a list. In the case the separator is specified, this list is transformed into a string,
separating the elements with the specified separator.

	encoding (str) – specifies the character encoding. If not specified, it takes the encoding specified when the object
was created.

	
close():

	closes the input stream. Only has an effect, if the input was specified as a filename.

	
get_data() → iterator

	retrieve the data as an generator/iterator. The parameter specifies the buffer size.

	
class XlsxImport(self, file_name: str, sheet_name: str = None)

	Open an xls worksheet and extract the data by row in the form of a dictionary
Expects the first row of the worksheet to contain the column names

	
open(file_name: str = None, sheet_name: str = None):

	

	
close()

	

	
get_data(max_rows=1000)

	

Examples

Import from the stdin in CSV format and upload in native query format (see next section).

import sys

from lwetl import Jdbc, CsvImport, NativeUploader

jdbc = Jdbc('scott')

with NativeUploader(jdbc,'TARGET_TABLE', commit_mode=lwetl.UPLOAD_MODE_COMMIT) as upl:
 # read CSV from stdin
 with CsvImport(sys.stdin) as csv:
 for r in csv.get_data():
 upl.insert(r)

Import from an excel 2007+ spreadsheet and upload using parameterized SQL syntax (see next section).

import sys

from lwetl import Jdbc, XlsxImport, ParameterUploader

jdbc = Jdbc('scott')

table = 'TARGET_TABLE'
alternative to with statement
xls = XlsxImport()
xls.open(table + '.xlsx')
with ParameterUploader(jdbc,table, commit_mode=lwetl.UPLOAD_MODE_COMMIT) as upl:
 for r in xls.get_data():
 upl.insert(r)
 if upl.rowcount > 1000:
 upl.commit()
 if upl.rowcount > 0:
 upl.commit()
xls.close()

Upload models

Operational modes

Import into a database has the following modes of operation:

	UPLOAD_MODE_DRYRUN

	SQL statements are generated, but not send to the database.

	UPLOAD_MODE_PIPE

	SQL statements are generated and piped for futher processing. The database itself is not touched.

	UPLOAD_MODE_ROLLBACK

	SQL statements are generated and executed to the database. However, the commit statement performs
a rollback instead.

Warning

This mode is not compatible with a database connection in auto-commit mode. It will also
fail if the user sends commit commands independently.

	UPLOAD_MODE_COMMIT

	SQL statements are generated and executed to the database. However, the commit statement performs
a rollback instead.

Classes

	
class NativeUploader(jdbc: Jdbc, table: str, fstream=None, commit_mode=UPLOAD_MODE_DRYRUN, exit_on_fail=True)

	Upload data into a table with native SQL (no parameters in the jdbc execute command).

	Parameters

	
	jdbc (Jdbc) – The target database connection

	table (str) – Name of the table in the database to insert the data

	fstream –

	commit_mode (str) – The upload mode, see Operational modes.

	exit_on_fail (bool) – Clear the commit buffer and exit if an insert, update, or delete command fails.

	
insert(data: dict):

	Insert into the table

	Parameters

	data (dict) – a dictionary of key (column name) and values. Keys, which do not correspond to an existing
column names are ignored.

	
update(data: dict, where_clause):

	Update an existing row in the table

	Parameters

	
	data (dict) – a dictionary of key (column name) and values. Keys, which do not correspond to an existing
column names are ignored.

	where_clause (None,str,dict) – filter for column selection. Valid formats for the where clause are:

	None

	updates all columns.

	str

	raw SQL WHERE clause (the keyword WHERE may be omitted).

	dict

	keys are column names. Non exisiting column names are ignored. Multiple columns are combined
with the AND statement. The value may be:

	a value (results in COLUMN_NAME = VALUE)

	a string with an operator and value, e.g., LIKE 'ABC%'

	a tuple (operator,value), e.g., ('>=', 7)

	
delete(where_clause):

	Delete rows in the table

	Parameters

	where_clause (None,str,dict) – filter for the columns to delete. Formats are identical to the update statement.

	
commit()

	Processes previous insert/update/delete statements depending on the Operational modes of the instance.

	UPLOAD_MODE_COMMIT

	sends a commit statement to the database

	UPLOAD_MODE_ROLLBACK

	sends a rollback statement to the database

	UPLOAD_MODE_DRYRUN

	does nothing

	UPLOAD_MODE_PIPE

	work in progress

Warning

This mode is not compatible with a database connection in auto-commit mode. It will also
fail if the user sends commit commands independently.

	
add_counter(columns: (str, list, set, tuple)):

	Mark columns as counters. Assumes the column type is a number.
Queries the maximum number of each column and then adds the next value (+1) in the column on each insert.

	Parameters

	columns (str,list,set,tuple) – names of the columns to add. May be a (comma-separated) string, or a list type.

	
class ParameterUploader(self, jdbc: Jdbc, table: str, fstream=None, commit_mode=UPLOAD_MODE_DRYRUN, exit_on_fail=True)

	Upload data into a table using parameterized SQL commands. See the section NativeUploader for details on the
command line arguments.

	
insert(data: dict):

	Insert into the table, see the NativeUploader for details.

	
update(data: dict, where_clause):

	Update an existing row in the table, see the NativeUploader for details.

	
delete(where_clause):

	Delete existing rows from the table, see the NativeUploader for details.

	
commit()

	Processes previous insert/update/delete statements depending on the Operational modes of the instance.
See the NativeUploader for details

	
add_counter(columns: (str, list, set, tuple)):

	Mark columns as counters. Assumes the column type is a number.
Queries the maximum number of each column and then adds the next value (+1) in the column on each insert.
See the NativeUploader for details

	
class MultiParameterUploader(jdbc: Jdbc, table: str, fstream=None, commit_mode=UPLOAD_MODE_DRYRUN, exit_on_fail=True)

	Upload data into a table using the jdbc executemany parameterized command.

	
insert(data: dict):

	Insert into the table, see the NativeUploader for details.

	
commit()

	Processes previous insert/update/delete statements depending on the Operational modes of the instance.
See the NativeUploader for details

	
add_counter(columns: (str, list, set, tuple)):

	Mark columns as counters. Assumes the column type is a number.
Queries the maximum number of each column and then adds the next value (+1) in the column on each insert.
See the NativeUploader for details

Export from a database

Formatters are intended to output table data. Supported formatters are:

	TextFormatter

	Outputs tables in plain text format with fixed-width columns.

	CvsFormatter

	Outputs tables in CSV format.

	XmlFormatter

	Outputs tables in XML format

	XlsxFormatter

	Outputs tables in EXCEL xlsx format

All formatters may be used in the following ways:

Example 1: function call

from lwetl import Jdbc, TextFormatter

jdbc = Jdbc('scott')

sql = 'SELECT * FROM MY_TABLE ORDER BY ID'
fmt = TextFormatter()
fmt(jdbc=jdbc, sql=sql)

Example 2: with statement

from lwetl import Jdbc, TextFormatter

jdbc = Jdbc('scott')

cur = jdbc.execute('SELECT * FROM MY_TABLE ORDER BY ID',cursor = None)

formatter = TextFormatter()
with TextFormatter(cursor=cur) as fmt:
 fmt.header()
 for row in jdbc.get_data(cur):
 fmt.write(row)
 fmt.footer()

Example 3: open/close

from lwetl import Jdbc, TextFormatter

jdbc = Jdbc('scott')

cur = jdbc.execute('SELECT * FROM MY_TABLE ORDER BY ID',cursor = None)

fmt = TextFormatter()
fmt.open(cursor=cur)
fmt.header()
for row in jdbc.get_data(cur):
 fmt.write(row)
fmt.footer()
fmt.close()

Below onl the TextFormatter is described in detail. For the otherones only the differences are mentioned.

	
TextFormatter():

	Outputs a table in plain text format with fixed-width columns.

	
__init__(*args, **kwargs):

	Instantiate. All arguments are optional.

	Parameters

	
	cursor (Cursor) – cursor generated by jdbc.execute()

	filename_or_stream ((str,TextIOWrapper,StringIO)) – specifier of the output stream. May be a filename (string) or a stream object.

	append (bool) – append the specified file, rather then creating a new one. Defaults to False.

	column_width (int) – the width of each text column. (Only used in this class)

from lwetl import TextFormatter

fmt = TextFormatter(cursor=cursor, filename_or_stream='myoutput.txt', append=True)

	
__call__(*args, **kwargs):

	Write a table in a single statement, see Example1 above.

	Parameters

	
	jdbc (Jdbc) – The Jdbc connection

	sql (str) – The SQL to parse

Also accepts all arguments of the __init__() statement with the exception of the cursor.

	
open(*args, **kwargs)

	Opens the file or stream for writing. Takes the same arguments as the __init__() statement.

	
close()

	Closes the output file or stream (if applicable)

	
format(row)

	Format the row of data.

	Parameters

	row ((list,tuple)) – a row of data.

	Returns

	a string.

	
header()

	Write the header (column names) to the specified file or stream.

	
write(row: list)

	Writes the output of format(row)() to the specified output stream.

	
CsvFormatter():

	Outputs a table in CSV format. The functionality is identical to the TextFormatter

	
all fuctions

	
	Parameters

	separator (str) – Specifies the CSV column separator. Defaults to ‘;’

	
XmlFormatter():

	Outputs a table in XML format. The functionality is identical to the TextFormatter

	
all fuctions

	
	Parameters

	
	dialect (str) – Specifies the XML dialect: ‘excel’, ‘value’, or ‘plain’. Defaults to ‘excel’

	pretty_print (bool) – Output the xml in formatted mode, instead of compact. Defaults to False.

	sheet_name (str) – Specifies the name of the worksheet. Defaults to ‘Sheet1’

	
next_sheet(cursor, sheet_name=None)

	Initiates a new sheet with a new cursor.

	Parameters

	
	cursor (Cursor) – cursor generated by jdbc.execute()

	sheet_name (str) – name of the work sheet. Uses a counter like ‘SheetN’ if not specified.

Example:

from lwetl import Jdbc, XmlFormatter

jdbc = Jdbc('scott')
fmt = None
for table in ['MY_TABLE1', 'MY_TABLE_2']:
 cur = jdbc.execute('SELECT * from {0} ORDER BY ID'.format(table), cursor=None)
 if fmt is None:
 fmt = XmlFormatter()
 fmt.open(cursor='cur')
 else:
 fmt.next_sheet(cur)

 fmt.header()
 for row in jdbc.get_data(cur):
 fmt.write(row)
fmt.close()

	
XlsxFormatter(jdbc: Jdbc):

	Outputs a table in a Excel 2007+ file. The functionality is identical to the XmlFormatter
but dialect and pretty_print are not supported. Instead, the argument pretty=True in
the open method, will reformat the xlsx file to autoset the column width and print the header line
in bold.

Warning

Stream output is not supported. Only valid file-names are accepted for the argument filename_or_stream.

Index

 C
 | D
 | F
 | G
 | H
 | J
 | L
 | M
 | N
 | O
 | P
 | S
 | T
 | W
 | X

C

 	
 	close() (built-in function)

 	CommitException (built-in class)

 	connection (Jdbc attribute)

 	
 	CsvImport (built-in class)

 	CsvImport.get_data() (built-in function)

 	CsvImport.open() (built-in function)

D

 	
 	DriverNotFoundException (built-in class)

F

 	
 	format() (built-in function)

G

 	
 	get_execution_statistics() (built-in function)

H

 	
 	header() (built-in function)

J

 	
 	Jdbc (built-in class)

 	Jdbc.execute() (built-in function)

 	Jdbc.get_columns() (built-in function)

 	
 	Jdbc.get_data() (built-in function)

 	Jdbc.query() (built-in function)

 	Jdbc.query_single() (built-in function)

 	JdbcInfo (built-in class)

L

 	
 	LdifImport (built-in class)

 	
 	LdifImport.get_data() (built-in function)

 	LdifImport.open() (built-in function)

M

 	
 	MultiParameterUploader (built-in class)

 	
 	MultiParameterUploader.commit() (built-in function)

N

 	
 	NativeUploader (built-in class)

 	
 	NativeUploader.commit() (built-in function)

 	next_sheet() (built-in function)

O

 	
 	open() (built-in function)

P

 	
 	ParameterUploader (built-in class)

 	
 	ParameterUploader.commit() (built-in function)

 	parse() (built-in function)

S

 	
 	ServiceNotFoundException (built-in class)

 	
 	SQLExcecuteException (built-in class)

T

 	
 	tag_connection() (built-in function)

W

 	
 	write() (built-in function)

X

 	
 	XlsxImport (built-in class)

 	
 	XlsxImport.close() (built-in function)

 	XlsxImport.get_data() (built-in function)

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 lwetl - Light Weight Extraction Transform Load tool

 		
 Introduction

 		
 Typical usage

 		
 Key features

 		
 Requirements

 		
 Status

 		
 Installation

 		
 Operating Systems

 		
 Linux

 		
 Windows

 		
 Dependencies

 		
 Examples and use

 		
 General

 		
 Invocation from the command-line

 		
 Invocation inside python

 		
 Module components

 		
 Index

 		
 The configuration file (config.yml)

 		
 The main connection

 		
 Import into a database

 		
 Export from a database

